ϳԹ

HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 6 (2025)

Box-Behnken Design-Based Optimization of Treatment Parameters for Soluble Reactive Phosphorus Removal of Synthetic Wastewater using Immobilized Spirulina platensis Beads

Sean Andre D. Calajate | Francis Edric M. Robles | Maria Francesca I. Rojas | Tristan Josef A. Tolentino | Angela Nicole S. Masongsong | John Ray C. Estrellado

Discipline: Education

 

Abstract:

Soluble reactive phosphorus (SRP), a bioavailable phosphorus form, contributes to over-eutrophication by stimulating uncontrolled algal growth. This study aims to determine the optimum treatment parame-ters for the SRP removal from synthetic wastewater using the alginate-immobilized cyanobacteria Spirulina platensis. S. platensis was immo-bilized in alginate beads with varying alginate concentrations (2.5%, 3%, and 3.5% w/v), and subjected to varying operation time (1, 2, and 3 days), and bead dosage (1.5, 2, and 2.5 beads/mL) for SRP removal using Box-Behnken experimental design. Resulting model indicated a strong predictive relationship with R2 = 0.9253 and p = 0.0212. Main effects of bead dosage (p = 0.01372), its quadratic effect (p = 0.01643), and its interaction with alginate concentration (p = 0.00465) were found to be statistically significant. Predicted optimum parameters (2.5% w/v alginate, 3 days, and 1.5 beads/mL) were validated and re-sulted in a lower SRP removal of 92.80 ± 0.73% with a percent error of 5.22% relative to a predicted SRP removal of 97.91%. Extrapolation of the prediction model to 100% outside the experimental region was verified resulting in SRP removal of 97.39 ± 0.08% with a percent error of 2.61% was achieved by adjusting the operation time to 3.4 days. The study shows promising potential of immobilized S. platensis beads in addressing over-eutrophication through significant phosphorus reduc-tion.



References:

  1. Abdel Hameed, M. S. (2007). Effect of algal density in bead, bead size, and bead con-centrations on wastewater nutrient re-moval. African Journal of Biotechnology, 6(10), 1185-1191. 
  2. Banerjee, S., Tiwade, P. B., Sambhav, K., Banerjee, C., & Bhaumik, S. K. (2019). Ef-fect of alginate concentration in wastewater nutrient removal using algi-nate-immobilized microalgae beads: Up-take kinetics and adsorption studies. Bio-chemical Engineering Journal, 149, 107241. 
  3. Bouabidi, Z. B., El-Naas, M. H., & Zhang, Z. (2018). Immobilization of microbial cells for the biotreatment of wastewater: A re-view. Environmental Chemistry Letters, 17(1), 241–257. 
  4. Brandão, B. C. S., Oliveira, C. Y. B., Santos, E. P., Abreu, J. L. D., Oliveira, D. W. S., Cabral da Silva, S. M. B., & Gálvez, A. O. (2023). Mi-croalgae-based domestic wastewater treatment: A review of biological aspects, bioremediation potential, and biomass production with biotechnological high-value. Environmental Monitoring and As-sessment, 195(1384). 
  5. Calvo-López, A., Ymbern, O., Puyol, M., & Alonso-Chamarro, J. (2021). Soluble reac-tive phosphorus determination in wastewater treatment plants by automat-ic microanalyzers. Talanta, 221, 121508. 
  6. Chai, W. S., Tan, W. G., Munawaroh, H. S. H., Gupta, V. K., Ho, S. H., & Show, P. L. (2021). Multifaceted roles of microalgae in the application of wastewater bio-treatment: A review. Environmental Pol-lution, 269, 116236. 
  7. Chaieb, K., Kouidhi, B., Ayed, L., Hosawi, S. B., Abdulhakim, J. A., Hajri, A., & Altayb, H. N. (2023). Enhanced textile dye removal from wastewater using natural bio-sorbent and Shewanella algae B29: Ap-plication of Box Behnken design and ge-nomic approach. Bioresource Technology, 374, 128755. 
  8. Chen, X., Lee, Y., Yuan, T., Lei, Z., Adachi, Y., Zhang, Z., Lin, Y., & Van Loosdrecht, M. C. (2022). A review on recovery of extracel-lular biopolymers from flocculent and granular activated sludges: Cognition, key influencing factors, applications, and challenges. Bioresource Technology, 363, 127854. 
  9. Cruz, I., Bashan, Y., Hernàndez-Carmona, G., & De-Bashan, L. E. (2013). Biological dete-rioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Applied Microbiology and Biotechnology, 97(22), 9847–9858. 
  10. de-Bashan, L. E., & Bashan, Y. (2010). Immobi-lized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 101(6), 1611-1627. 
  11. Department of Environment and Natural Re-sources. (2021). Water quality guidelines and general effluent standards of 2016 (DENR Administrative Order No. 2021-XX, Sec. 5.3). 
  12. Domini, M., Abbà, A., & Bertanza, G. (2022). Analysis of the variation of costs for sew-age sludge transport, recovery, and dis-posal in Northern Italy: A recent survey (2015–2021). Water Science & Technolo-gy, 85(4), 1167–1175. 
  13. El-Sheekh, M., Morsi, H., & Hassan, L. (2020). Growth Enhancement of Spirulina platen-sis through Optimization of Media and Ni-trogen Sources. Egyptian Journal of Botany, 0(0), 0. 
  14. Eroglu, E., Smith, S. M., & Raston, C. L. (2015). Application of various immobilization techniques for algal bioprocesses. In Bi-omass and Biofuels from Microalgae (pp. 19–44). Springer. 
  15. Ghaeni, M., & Roomiani, L. (2016). Effects of Spirulina, microalgae. Journal of Ad-vanced Agricultural Technologies, 3(2), 114-117. 
  16. Gichana, Z., Liti, D., Drexler, S., Zollitsch, W., Meulenbroek, P., Wakibia, J., Ogello, E., Akoll, P., & Waidbacher, H. (2019). Ef-fects of aerated and non-aerated biofil-ters on effluent water treatment from a small-scale recirculating aquaculture sys-tem for Nile tilapia (Oreochromis nilot-icus L.). Die Bodenkultur Journal of Land Management Food and Environment, 70(4), 209–219. 
  17. Halim, A. A., & Haron, W. N. a. W. (2021). Im-mobilized Microalgae using Alginate for Wastewater Treatment. Pertanika Jour-nal of Science & Technology, 29(3). 
  18. Hossain, S. M. Z., Alnoaimi, A., Razzak, S. A., Ezuber, H., Al‐Bastaki, N., Safdar, M., Al-kaabi, S., & Hossain, M. M. (2018). Multi-objective optimization of microalgae (Chlorella sp.) growth in a photobioreac-tor using Box‐Behnken design approach. The Canadian Journal of Chemical Engi-neering, 96(9), 1903–1910. 
  19. Hossain, S. M. Z., Sultana, N., Jassim, M. S., Coskuner, G., Hazin, L. M., Razzak, S. A., & Hossain, M. M. (2022). Soft-computing modeling and multiresponse optimization for nutrient removal process from munic-ipal wastewater using microalgae. Jour-nal of Water Process Engineering, 45, 102490. 
  20. Huno, S. K., Rene, E. R., van Hullebusch, E. D., & Annachhatre, A. P. (2018). Nitrate re-moval from groundwater: a review of natural and engineered processes. Jour-nal of Water Supply: Research and Tech-nology—AQUA, 67(8), 885-902
  21. Karydis, M. (2013). Eutrophication assessment of coastal waters based on indicators: a literature review. Global NEST Journal, 11(4), 373–390. 
  22. Khatoon, H., Penz, K. P., Banerjee, S., Rahman, M. R., Minhaz, T. M., Islam, Z., Mukta, F. A., Nayma, Z., Sultana, R., & Amira, K. I. (2021). Immobilized Tetraselmis sp. for reducing nitrogenous and phosphorous compounds from aquaculture wastewater. Bioresource Technology, 338, 125529. 
  23. Klokk, T. I., & Melvik, J. E. (2002). Controlling the size of alginate gel beads by use of a high electrostatic potential. Journal of Mi-croencapsulation, 19(4), 415–424. 
  24. Lee, B., Ravindra, P., & Chan, E. (2013). Size and shape of calcium alginate beads pro-duced by extrusion dripping. Chemical Engineering & Technology, 36(10), 1627–1642. 
  25. Li, Y., Wu, X., Liu, Y., & Taidi, B. (2024). Immo-bilized microalgae: Principles, processes, and its applications in wastewater treat-ment. World Journal of Microbiology and Biotechnology, 40(150). 
  26. Lin, Y., & Tanaka, S. (2006). Oxygen transfer and mixing in bioreactors: A review. Biochemical Engineering Journal, 30(1), 1-7. 
  27. Maali, A., Gheshlaghi, R., & Mahdavi, M. A. (2024). Maximizing key biochemical products of Spirulina platensis: optimal light quantities and best harvesting time. OCL, 31, 21. 
  28. Malone, T., & Newton, A. (2020). Effects of nu-trient pollution in marine ecosystems are compounded by human activity. Frontiers in Marine Science. 
  29. Molinuevo-Salces, B., Riaño, B., Hernández, D., & García-González, M. C. (2019). Microal-gae and wastewater treatment: Ad-vantages and disadvantages. In M. Alam & Z. Wang (Eds.), Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 505–533). Springer. 
  30. Mollamohammada, S. (2020). Nitrate and herbicides removal from groundwater using immobilized algae (Doctoral disser-tation). University of Nebraska-Lincoln. 
  31. Mazur, L. P., Cechinel, M. A., De Souza, S. M. U., Boaventura, R. A., & Vilar, V. J. (2018). Brown marine macroalgae as natural cat-ion exchangers for toxic metal removal from industrial wastewaters: A review. Journal of Environmental Management, 223, 215–253. 
  32. Oldenborg, K. A., & Steinman, A. D. (2019). Im-pact of sediment dredging on sediment phosphorus flux in a restored riparian wetland. Science of the Total Environ-ment, 650, 1969-1979.
  33. Osman, G. A., Ali, M. S., Kamel, M. M., & Amber, S. G. (2011). The role of Cladophora sp. and Spirulina platensis in the removal of microbial flora in Nile water. New York Science Journal, 4(3), 8–17, 4(3). 
  34. Paerl, H. W. (2009). Controlling eutrophication along the freshwater–marine continuum: Dual nutrient (N and P) reductions are essential. Estuaries and Coasts, 32(4), 593–601. 
  35. Parsons, T. R., Maita, Y., & Lalli, C. M. (1984). Determination of phosphate. In Elsevier eBooks (pp. 22–25). 
  36. Porkka, T. (2021). Optimization of microalgal immobilization for cultivation in aquacul-ture wastewater (Master’s thesis). Uni-versity of Eastern Finland. 
  37. Purev, O., Park, C., Kim, H., Myung, E., Choi, N., & Cho, K. (2023). Spirulina platensis im-mobilized alginate beads for removal of Pb(II) from aqueous solutions. Interna-tional Journal of Environmental Research and Public Health, 20(2), 1106. 
  38. Patnaik, S., Sarkar, R., & Mitra, A. (2001). Algi-nate immobilization of Spirulina platensis for wastewater treatment. Indian journal of experimental biology, 39(8), 824–826. 
  39. Rajasekaran, C., Ajeesh, C. P. M., Balaji, S., Shalini, M., Siva, R., Das, R., Fulzele, D. P., & Kalaivani, T. (2015). Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains. Walailak Journal of Sci-ence and Technology (WJST), 13(1), 67–75.https://www.researchgate.net/publication/291699334_Effect_of_Modified_Zarrouk's_Medium_on_Growth_of_Different_Spirulina_Strains
  40. Sajid, M., Asif, M., Baig, N., Kabeer, M., Ihsanul-lah, I., & Mohammad, A. W. (2022). Car-bon nanotubes-based adsorbents: Prop-erties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process En-gineering, 47, 102815. 
  41. Shpigel, M., Neori, A. (2007). Microalgae, Macroalgae, and Bivalves as Biofilters in Land-Based Mariculture in Israel. In: Bert, T.M. (eds) Ecological and Genetic Impli-cations of Aquaculture Activities. Meth-ods and Technologies in Fish Biology and Fisheries, vol 6. Springer, Dordrecht. 
  42. Santos, A. F., Mendes, L. S., Alvarenga, P., Gan-do-Ferreira, L. M., & Quina, M. J. (2024). Nutrient Recovery via Struvite Precipita-tion from Wastewater Treatment Plants: Influence of Operating Parameters, Coex-isting Ions, and Seeding. Water, 16(12), 1675. 
  43. Tam, N., & Wong, Y. (2000). Effect of immobi-lized microalgal bead concentrations on wastewater nutrient removal. Environ-mental Pollution, 107(1), 145–151. 
  44. Taqiyyah, A. M., Risjani, Y., Prihanto, A. A., Yanuhar, U., & Fadjar, M. (2022). Effect of Aquaculture Wastewater And Zarrouk in Increasing Biomass, Protein, and Carote-noids levels of Spirulina platensis. Jurnal Ilmiah Perikanan Dan Kelautan. 
  45. Velusamy, K., Periyasamy, S., Kumar, P. S., Vo, D. V. N., Sindhu, J., Sneka, D., & Sub-hashini, B. (2021). Advanced techniques to remove phosphates and nitrates from waters: A review. Environmental Chemis-try Letters, 19, 3165–3180. 
  46. Vonshak, A. (1997). Spirulina platensis arthro-spira. In CRC Press eBooks. 
  47. Wang, L., Liu, X., Li, Z., Wan, C., & Zhang, Y. (2023). Filamentous aerobic granular sludge: A critical review on its cause, im-pact, control and reuse. Journal of Envi-ronmental Chemical Engineering, 11(3), 110039. 
  48. Xu, S., Li, Z., Yu, S., Chen, Z., Xu, J., Qiu, S., & Ge, S. (2024). Microalgal–bacteria biofilm in wastewater treatment: Advantages, prin-ciples, and establishment. Water, 16(18), 2561. 
  49. Yang, Z., Pei, H., Han, F., Wang, Y., Hou, Q., & Chen, Y. (2018). Effects of air bubble size on algal growth rate and lipid accumula-tion using fine-pore diffuser photobiore-actors. Algal Research, 32, 293–299. 
  50. You, F., Fan, Y., Tang, L., Liu, X., Jin, C., Zhao, Y., Wang, Y., & Guo, L. (2025). Optimiza-tion of Phaeodactylum tricornutum culti-vation for enhancing mariculture wastewater treatment and high value product recovery using Box–Behnken de-sign. Process Safety and Environmental Protection, 107022.